Fibroblast Growth Factor 8 Expression in GT1-7 GnRH-Secreting Neurons Is Androgen-Independent, but Can Be Upregulated by the Inhibition of DNA Methyltransferases

نویسندگان

  • Megan L. Linscott
  • Wilson C. J. Chung
چکیده

Fibroblast growth factor 8 (FGF8) is a potent morphogen that regulates the embryonic development of hypothalamic neuroendocrine cells. Indeed, using Fgf8 hypomorphic mice, we showed that reduced Fgf8 mRNA expression completely eliminated the presence of gonadotropin-releasing hormone (GnRH) neurons. These findings suggest that FGF8 signaling is required during the embryonic development of mouse GnRH neurons. Additionally, in situ hybridization studies showed that the embryonic primordial birth place of GnRH neurons, the olfactory placode, is highly enriched for Fgf8 mRNA expression. Taken together these data underscore the importance of FGF8 signaling for GnRH emergence. However, an important question remains unanswered: How is Fgf8 gene expression regulated in the developing embryonic mouse brain? One major candidate is the androgen receptor (AR), which has been shown to upregulate Fgf8 mRNA in 60-70% of newly diagnosed prostate cancers. Therefore, we hypothesized that ARs may be involved in the regulation of Fgf8 transcription in the developing mouse brain. To test this hypothesis, we used chromatin-immunoprecipitation (ChIP) assays to elucidate whether ARs interact with the 5'UTR region upstream of the translational start site of the Fgf8 gene in immortalized mouse GnRH neurons (GT1-7) and nasal explants. Our data showed that while AR interacts with the Fgf8 promoter region, this interaction was androgen-independent, and that androgen treatment did not affect Fgf8 mRNA levels, indicating that androgen signaling does not induce Fgf8 transcription. In contrast, inhibition of DNA methyltransferases (DNMT) significantly upregulated Fgf8 mRNA levels indicating that Fgf8 transcriptional activity may be dependent on DNA methylation status.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential regulation of gonadotropin-releasing hormone secretion and gene expression by androgen: membrane versus nuclear receptor activation.

Steroid hormones induce rapid membrane receptor-mediated effects that appear to be separate from long-term genomic events. The membrane receptor-mediated effects of androgens on GT1-7 GnRH-secreting neurons were examined. We observed androgen binding activity with a cell-impermeable BSA-conjugated testosterone [testosterone 3-(O-carboxymethyl)oxime (T-3-BSA)] and were able to detect a 110-kDa p...

متن کامل

Insulin-like growth factor-I effects on gonadotropin-releasing hormone biosynthesis in GT1-7 cells.

The immortalized GT1-7 cell line synthesizes and secretes GnRH, the key hormone of reproduction. However, GT1-7 cells lack the normal inputs from neurotransmitters, growth factors, and steroids, which are involved in the maturation and maintenance of GnRH neurons in the brain. We examined the effects of the neurotrophic factor insulin-like growth factor-I (IGF-I) on GnRH gene expression and the...

متن کامل

Differential Fibroblast Growth Factor 8 (FGF8)-Mediated Autoregulation of Its Cognate Receptors, Fgfr1 and Fgfr3, in Neuronal Cell Lines

Fibroblast growth factors (FGFs) mediate a vast range of CNS developmental processes including neural induction, proliferation, migration, and cell survival. Despite the critical role of FGF signaling for normal CNS development, few reports describe the mechanisms that regulate FGF receptor gene expression in the brain. We tested whether FGF8 could autoregulate two of its cognate receptors, Fgf...

متن کامل

Expression of a leptin receptor in immortalized gonadotropin-releasing hormone-secreting neurons.

Leptin is secreted by adipocytes and regulates food intake and energy balance through the activation of specific receptors (OB-R). Recent evidence suggests that it is also involved in the control of reproductive processes, by possibly acting on central and peripheral targets. In particular, it has been shown that leptin may indirectly stimulate GnRH release from hypothalamic fragments by acting...

متن کامل

Melatonin receptor activation regulates GnRH gene expression and secretion in GT1-7 GnRH neurons. Signal transduction mechanisms.

Melatonin plays a significant role in the control of the hypothalamic-pituitary-gonadal axis. Using the GT1-7 cell line, an in vitro model of GnRH-secreting neurons of the hypothalamus, we examined the potential signal transduction pathways activated by melatonin directly at the level of the GT1-7 neuron. We found that melatonin inhibits forskolin-stimulated adenosine 3'-, 5'-cyclic monophospha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016